AddeDarveauBarkerEtAl2020

Référence

Adde, A., Darveau, M., Barker, N., Cumming, S.G. (2020) Predicting spatiotemporal abundance of breeding waterfowl across Canada: A Bayesian hierarchical modelling approach. Diversity and Distributions, 26(10):1248-1263. (Scopus )

Résumé

Aim: Our aim was to develop predictive statistical models for mapping the abundance of 18 waterfowl species at a pan-Canadian level. We refined the previous generation of national waterfowl models by (a) developing new, more interpretable statistical models that (b) explicitly account for spatiotemporal variations in waterfowl abundance, while (c) testing for associations with an updated suite of habitat covariates. Location: All of Canada, excluding the Northern Arctic ecozone. Methods: Our response variables were annual species counts on 2,227 aerial-survey segments over a period of 25 years (1990–2015). Combining machine-learning and hierarchical regression modelling, we devised an innovative covariate selection strategy to select for each species the best subset of a panel of 232 candidate habitat covariates. With the selected covariates, we implemented hierarchical generalized linear models in a Bayesian framework, using the integrated nested Laplace approximation and stochastic partial differential equation approaches. Results: On average, our models explained 47% of the observed variance for spatiotemporal predictions and 74% for temporally averaged spatial predictions. The 18 species models included 94 significant waterfowl-habitat associations involving 42 distinct habitat covariates, with an average of 5.3 covariates per model. Covariates for forest attributes were the most represented in our models. The proportional biomass of Populus tremuloides was the most frequently selected covariate (10/94 associations in 10/18 species). Model predictions generated spatial and spatiotemporal maps of species abundances over almost all of Canada. Main conclusions: We showed that it is possible to efficiently combine machine-learning, variable selection and hierarchical Bayesian methods that exploit high-dimensional covariate spaces. Our approach yielded powerful and easily interpretable species distribution models with very few covariates, while accounting for residual autocorrelation. Possible applications of the resulting models and maps include the development of biodiversity indicators, the evaluation and execution of conservation planning strategies, and ecosystem services monitoring. © 2020 The Authors. Diversity and Distributions published by John Wiley & Sons Ltd

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { AddeDarveauBarkerEtAl2020,
    AUTHOR = { Adde, A. and Darveau, M. and Barker, N. and Cumming, S.G. },
    JOURNAL = { Diversity and Distributions },
    TITLE = { Predicting spatiotemporal abundance of breeding waterfowl across Canada: A Bayesian hierarchical modelling approach },
    YEAR = { 2020 },
    NOTE = { cited By 0 },
    NUMBER = { 10 },
    PAGES = { 1248-1263 },
    VOLUME = { 26 },
    ABSTRACT = { Aim: Our aim was to develop predictive statistical models for mapping the abundance of 18 waterfowl species at a pan-Canadian level. We refined the previous generation of national waterfowl models by (a) developing new, more interpretable statistical models that (b) explicitly account for spatiotemporal variations in waterfowl abundance, while (c) testing for associations with an updated suite of habitat covariates. Location: All of Canada, excluding the Northern Arctic ecozone. Methods: Our response variables were annual species counts on 2,227 aerial-survey segments over a period of 25 years (1990–2015). Combining machine-learning and hierarchical regression modelling, we devised an innovative covariate selection strategy to select for each species the best subset of a panel of 232 candidate habitat covariates. With the selected covariates, we implemented hierarchical generalized linear models in a Bayesian framework, using the integrated nested Laplace approximation and stochastic partial differential equation approaches. Results: On average, our models explained 47% of the observed variance for spatiotemporal predictions and 74% for temporally averaged spatial predictions. The 18 species models included 94 significant waterfowl-habitat associations involving 42 distinct habitat covariates, with an average of 5.3 covariates per model. Covariates for forest attributes were the most represented in our models. The proportional biomass of Populus tremuloides was the most frequently selected covariate (10/94 associations in 10/18 species). Model predictions generated spatial and spatiotemporal maps of species abundances over almost all of Canada. Main conclusions: We showed that it is possible to efficiently combine machine-learning, variable selection and hierarchical Bayesian methods that exploit high-dimensional covariate spaces. Our approach yielded powerful and easily interpretable species distribution models with very few covariates, while accounting for residual autocorrelation. Possible applications of the resulting models and maps include the development of biodiversity indicators, the evaluation and execution of conservation planning strategies, and ecosystem services monitoring. © 2020 The Authors. Diversity and Distributions published by John Wiley & Sons Ltd },
    AFFILIATION = { Department of Wood and Forest Sciences, Laval University, Quebec, QC, Canada; Ducks Unlimited Canada, Quebec, QC, Canada; Canadian Wildlife Service, Environment and Climate Change Canada, Edmonton, AB, Canada },
    AUTHOR_KEYWORDS = { Bayesian hierarchical models; breeding waterfowl; Canada; covariate selection; habitat; INLA-SPDE; spatiotemporal; species distribution modelling },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1111/ddi.13129 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089378072&doi=10.1111%2fddi.13129&partnerID=40&md5=361fa112a33928cd3b1d572e01f4499e },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Le CEF est un
regroupement stratégique du

********************************************************** *********************** Infolettre *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Colloque du CEF ****************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Formations et Écoles d'été

********************************************************** ***************** Pub - Congrès Mycelium ****************** **********************************************************

Septembre 2021

********************************************************** ***************** Pub - IWTT ****************** **********************************************************

Reporté en 2021

**********************************************************

***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

  • Voici une liste (clairement incomplète) des packages R axés sur l'écologie! N'hésitez pas à ajouter à la liste

Voir les autres...